Structural studies by ${}^{1}\text{H-}$ and ${}^{13}\text{C-n.m.r.}$ spectroscopy and circular dichroism of acetylated α - and β -D-gluco- and -manno-pyranosylarenes*

Véronique Bellosta, Claude Chassagnard,

Laboratoire de Recherches Organiques, U.A. CNRS 476, E.S.P.C.I., 10 rue Vauquelin, 75005 Paris (France) and Stanislas Czernecki[†]

Laboratoire de Chimie des Glucides, Université P. et M. Curie, T 74-E6, 4 Pl. Jussieu, 75005 Paris (France) (Received March 9th, 1990; accepted for publication, February 11th, 1991)

ABSTRACT

The configuration and conformation of the title compounds were investigated on the basis of 1 H- and 13 C-n.m.r. spectra, specific rotations, and circular dichroism. The 13 C-n.m.r. data (chemical shift of the C-1 resonances, $J_{\text{C-l,H-l}}$ values) indicate that the anomeric configuration of C-glycopyranosyl compounds can be assigned by using the same rules as for the corresponding glycopyranosides.

INTRODUCTION

In studies of the synthesis of C-glycosylarenes^{1,2}, several pairs of anomers were prepared for re-examination of their physical properties as related to the anomeric configuration. The tetra-acetates of α - and β -D-gluco- (1α and 1β) and -manno-pyranosylbenzene (2α and 2β) were chosen because these substructures are those found more frequently in natural C-glycosyl compounds³, especially in C-flavonoids⁴.

When these compounds were prepared originally^{5,6}, the configurations were assigned on the assumption that C-glycosyl compounds followed Hudson's rule⁷, namely, that the more dextrorotatory isomer was the α anomer. However, there are exceptions to Hudson's rule, namely 2,3-unsaturated glycopyranosides⁸, pyrimidine 2-deoxy-D-ribonucleosides⁹, 2,3-unsaturated C-glycosyl compounds^{10,11}, and 2,3-O-isopropylidene-C-glycofuranosyl derivatives¹². Therefore, the structural assignments for 1 and 2 have been re-examined by modern spectroscopic methods.

CH₂OAc

$$R^1$$

OAc

 R^2

OAc

 R^2
 R^2

^{*} C-Glycosyl Compounds. Part VIII.

[†] To whom correspondence should be addressed.

V. BELLOSTA et al.

RESULTS AND DISCUSSION

Compounds 1 and 2 were prepared as reported^{5,6} and the purity of each anomer was verified by g.l.c. The high degree of purity of oily 1α resulted in a more dextrorotatory $[\alpha]_D$ value than reported⁵.

The ¹H-n.m.r. data for 1 and 2 are listed in Table I, and the spectra are amenable to first-order analysis. The high ³J values (9.3–9.8 Hz) for H-1/5 of the pyranosyl ring in 1β indicated ax, ax dispositions and accord with the ⁴C₁(D) conformation. For 1α , the values (6.2–8.8 Hz) of $J_{2,3}$, $J_{3,4}$, and $J_{4,5}$ in various solvents were too small for an ax, ax relationship of H-2/5 and too large for a ¹C₄(D) conformation. These data suggest that there was a conformational equilibrium for 1α in which the ⁴C₁(D) conformation preponderated and was more abundant in CDCl₃ and CD₂Cl₂ than in (CD₃)₂SO. Although the signals were not resolved when the ¹H-n.m.r. spectra were recorded at –70°, a distorted chair or a boat conformation was ruled out for the major conformer because all of the ³J values depended on the solvent; the presence of a distorted conformation in the minor conformer is not precluded.

This conformational equilibrium of 1α was also indicated by the effect of solvent on the $[\alpha]_D$ values $[1\alpha, +81^\circ$ (chloroform), $+59^\circ$ (acetone), $+47^\circ$ (methyl sulfoxide); 1β , -20° (chloroform), -14° (acetone), -22° (methyl sulfoxide); $(c\ 0.54-0.93)$].

Similar variations in 3J and $[\alpha]_D$ values have been observed for glycopyranosides 13 , and for N-glucopyranosyl 13 and C-glycopyranosyl compounds 14 , and explained in terms of conformational equilibria. Since there is no anomeric effect in 1α to stabilise the 4C_1 (D) conformation, it is likely that this conformational change is due to a strong gauche interaction of the axial phenyl group and AcO-2. The values of $J_{1,2}$ [4.6 Hz in CD₂Cl₂ and 3.7 Hz in (CD₃)₂SO] for 1α accord with an ax,eq or eq,ax relationship of H-1,2 and thus confirm the α configuration.

Thus, the original assignments of configurations^{5,6}, based on optical rotation data, are confirmed by ${}^{1}\text{H-n.m.r.}$ data; in all of the solvents employed, the α anomer is the more dextrorotatory (see above).

For 2α and 2β , the high values of $J_{3,4}$ and $J_{4,5}$ indicated ${}^4C_1(D)$ conformations. Due to the axial location of AcO-2, the configuration at C-1 could be deduced from the $J_{1,2}$ values (3.1 Hz for 2α and 1.3 Hz for 2β).

According to Booth's rule¹⁵, a gauche coupling ${}^3J_{A,B}$ decreases with increasing electronegativity of the substituent S in the fragment H_A –C(S)–C– H_B , provided that S is antiperiplanar to H_B .

The Newman projections along C-1–C-2 for 2α and 2β (3 and 4, respectively) show that, in 2β , H-1,2 are each antiparallel to an electronegative atom (O-2 and O-5, respectively). Consequently the observed small $J_{1,2}$ value (1.3 Hz) accords with previous observations of this phenomenon¹⁶. In 2α , the higher value for $J_{1,2}$ (3.1 Hz) is accounted for by the fact that only H-2 is antiparallel to an oxygen atom.

These observations, together with the fact that 2α is the more dextrorotatory, confirm the assigned structures. The axial location of AcO-2 allows the ${}^4C_1(D)$ conformation for 2α . Moreover, the chemical shifts of the H-1 resonances in 2α and 2β accord

TABLE I

H-N.m.r. d	lata (ð in p.p.1	m., Jin Hz) foi	r 2,3,4,6-tetra	-O-acetyl-α- (1α) and -β-D-	glucopyranos	ylbenzene (1 β) and the α- (2	2α) and eta -D-manno	H-N.m.r. data (δ in p.p.m., J in Hz) for 2,3,4,6-tetra-O-acetyl- α -(1 α) and - β -D-glucopyranosylbenzene (1 β) and the α -(2 α) and β -D-mannopyranosyl (2 β) analogues
Compound Solvent	Solvent	H-1	Н-2	Н-3	H-4	Н-5	Н-ба	99-Н	AcO	Ph
1α	CDCI,	5.35 (m)	5.35 (m) · 5.60 (m) ^a	5.60 (m) ^a	5.13 (dd)	3.73 (ddd) 4.29 (dd)	4.29 (dd)	4.06 (dd)	2.00, 2.02	7.28–7.45 (m, 3 H),
				J _{3,4} 7.7	J _{4,5} 8.8	J _{5,6a} 5.1	J _{5,66} 2.9	J _{6a,6b} 12.2	2.09, 2.10 (4 8)	7.34–7.82 (m, 2 n)
1α	(CH ₃) ₂ SO 5.29 (d)	5.29 (d)	5.14 (dd)	5.22 (dd)	4.96 (dd)	3.93 (ddd) 4.38 (dd)	4.38 (dd)	4.11 (dd)	1.86, 2.00	7.24–7.40 (m)
		$J_{1,2}$ 3.7	J_{23} 6.2	$J_{3,4}$ 6.2	J _{4,5} 6.2	J _{5,68} 7.1	$J_{5,6b}$ 3.3	J _{6a,6b} 12.2	2.01, 2.08 (4 S)	
1α	CD_2CI_2	5.29 (br. d.) 5.25 (dd)	5.25 (dd)	5.45 (dd)	5.83 (dd)	3.86 (ddd) 4.32 (dd)	4.32 (dd)	4.09 (dd)	1.95, 2.02	7.28–7.43 (m, 3 H)
		$J_{1,2}$ 4.6	J _{2,3} 7	J _{3,4} 6.9	J _{4,5} 7.4	$J_{\rm s,6a}$ 6.2	J _{5,6b} 3.3	J _{6a,6b} 12.1	2.00, 2.10 (4 S)	/.31-/.3/ (m, 2 H)
1β	CDCI,	4.40 (d)	5.14 (dd)	5.35 (dd)	5.24 (dd)	3.84 (ddd) 4.28 (dd)	4.28 (dd)	4.18 (dd)	1.80, 2.01	7.34 (m)
		J _{1,2} 9.8	$J_{2,3}$ 9.3	J _{3,4} 9.3	J _{4,5} 9.7	J _{5,6a} 4.7	J _{5,6b} 2.2	$J_{6a,6b}$ 12.3	2.00, 2.09 (4 S)	
2α	CDCI	5.13 (d)	6.01 (dd)	5.17 (dd)	5.36 (dd)	3.77 (ddd) 4.38 (dd)	4.38 (dd)	4.13 (dd)	2.02, 2.06	7.3–7.55 (m)
		$J_{1,2}$ 3.1	$J_{2,3}$ 3.1	$J_{3,4}$ 9.1	J _{4,5} 8.8	J _{5,6a} 6	J _{5,6h} 2.8	J _{6a,6b} 12.2	2.14, 2.17 (4 8)	
2β	CDC13	4.77 (d)	5.56 (dd)	5.27 (dd)	5.35 (dd)	3.82 (ddd) 4.34 (dd)	4.34 (dd)	4.26 (dd)	1.92, 1.99	7.32 (m)
		J _{1,2} 1.3	J _{2,3} 3.2	J _{3,4} 9.8	J _{4,5} 9.6	J _{5,6a} 5.7	J _{5,6b} 2.6	J _{6a,6b} 12.2	2.03, 2.10 (4 s)	

" The signal of H-3 comprised at least 9 lines.

V. BELLOSTA et al.

with this assignment. As found for cyclohexane derivatives¹⁷ and several C-glycopyranosyl compounds^{18,19}, the equatorial H-1 of 2α (δ 5.13) is more deshielded than the axial H-1 of 2β (δ 4.77).

Circular dichroism (c.d.) has been used frequently to detect differences in configuration and conformation, especially in cyclic molecules²⁰, including phenyl glycopyranosides and 1-thioglycopyranosides²¹, for which α anomers gave positive Cotton effects and β anomers gave negative effects.

The c.d. curves for 1 and 2 are shown in Fig. 1 in the 250-nm region. The c.d. curve for 1β shows a well-defined negative Cotton effect, whereas that for 1α exhibits a positive Cotton effect, but the structure is not well defined, which accords with a conformational equilibrium for this compound (see above)²². The signs of these Cotton effects are identical to those for acetylated phenyl α - and β -D-glucopyranosides²³. For 2α and 2β , both c.d. curves are well resolved, with a negative Cotton effect for the β anomer and a positive effect for the α anomer. Thus, modification of the configuration at C-2 on going from 1 to 2, although close to the chromophore, does not affect the Cotton effect. For other C-glycosylated aromatic compounds 10,24, the sign of the Cotton effect was not influenced by changes in conformation nor by different substitution at C-3 and C-4. Therefore, the signs of the Cotton effect for 1 and 2 appear to be determined essentially by the anomeric configuration.

The 13 C-n.m.r. spectra of 1 and 2 are of interest in terms of a comparison of the chemical shifts and $J_{\text{C-1,H-1}}$ values with the corresponding data for the glycosides^{25,26}. The data for 1 and 2 are assembled in Table II. The 13 C chemical shifts were assigned on the basis of the results of a heteronuclear shift-correlated 2D-n.m.r. experiment²⁷, and the C-3 and C-5 signals for 1α were assigned on the basis of appropriate cross-sections along the 14 H dimension of the contour map.

Systematic shielding of C-1 was observed in comparison with the acetylated phenyl glycopyranosides²⁵. According to the rule²⁸ for γ -effects, the signals for C-5 and C-1 appear at lower field for the β - than for the α -D anomer. These observations parallel those for the corresponding glycopyranosides^{25,26} and accord with data for other C-glycopyranosyl compounds²⁹. The $J_{C-1,H-1}$ values were smaller (10–12 Hz) for the β -than for the α -D anomers in the 4C_1 conformation, as observed for other C-glycopyranosyl compounds²⁹ and glycopyranosides^{25,26}.

Thus, the chemical shifts of C-1 and the $J_{C-1,H-1}$ values are of value for the stereochemical assignment of the anomeric configuration of C-glycopyranosyl compounds.

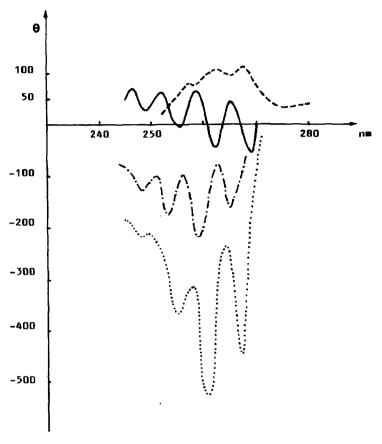


Fig. 1. C.d. spectra of 1α (----), 1β (----), 2α (----), and 2β (----) recorded for solutions in aqueous 95% ethanol.

TABLE II $$^{13}\text{C-N.m.r.}$$ data (δ in p.p.m., $^1J_{\text{CH}}$ values in Hz) for 1 and 2

Compound	C-1	C-2	C-3	C-4	C-5	C-6
1β	80.22	72.71	74.30	68.67	76.16	62.37
	(144)	(154)	(152)	(154)	(144)	(150)
1α	72.91 ^a	70.73ª	70.40	68.63	70.35	61.94
	(156)	(152)	b	(153)	b	(148)
2β	78.09	70.54	72.36	66.16	76.28	62.86
•	(140)	(153)	(148) ^c	(155)°	(143)	(149)
2α	75.37	69.06	69.42	66.79	71.16	62.18
	(150)	(152)	(151)°	(156)°	(145) ^c	(148)

^a Assignments may be reversed. $^{b\, 1}J_{\rm C,H}$ not measurable (H strongly coupled), ^c Measured from the centre of a broad multiplet.

6 V. BELLOSTA et al.

EXPERIMENTAL

General methods. — Melting points were determined on a Thomas-Hoover apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 141 polarimeter. N.m.r. spectra (internal Me₄Si) were recorded with a Bruker AM-250 instrument (1 H, 250 MHz; 13 C, 63 MHz). The chemical shifts of the 13 C resonances were measured from proton-decoupled spectra relative to internal CDCl₃ (77.0 p.p.m.). The $J_{C-1,H-1}$ values were measured on undecoupled spectra obtained with a gated-decoupling technique³⁰. C.d. spectra were recorded with a Jobin et Yvon dichrograph III at room temperature with 1- or 2-cm cells on solutions (\sim 0.6 mg/mL) in aqueous 95% EtOH. Elemental analyses were performed at the Service de Microanalyse of the Université P. et M. Curie. G.l.c. was performed with a Girdel 75 FD instrument fitted with a 1-m column of 3% of phenyldiethanolamine succinate (PDEAS) on Chromosorb WAW DMCS. T.l.c. was performed on Silica Gel 60F₂₅₄ (Merck), using 2:1 ether-light petroleum (b.p. 40–65°). Silica Gel 40 (Merck, 70–230 mesh ASTM) was used for column chromatography with 1:1 ether-light petroleum.

A mixture of 1α and 1β was obtained, according to Bonner⁵, by reaction of the acetylated glycosyl bromide with phenylmagnesium bromide and reacetylation. Crystallisation of the crude mixture from 2-propanol gave pure 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosylbenzene (1β), m.p. $156-158^{\circ}$, $[\alpha]_D^{20}-20^{\circ}$ (c 0.94, chloroform), R_F 0.36; lit. 5 m.p. $155-156^{\circ}$, $[\alpha]_D^{20}-18.6^{\circ}$ (chloroform). Pure 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosylbenzene (1α), obtained after column chromatography of the crude residue, was an oil, $[\alpha]_D^{20}+81^{\circ}$ (c 0.93, chloroform), R_F 0.37; lit. 5 $[\alpha]_D+39.9^{\circ}$ (chloroform). The purity of each anomer was verified by g.l.c. at 155° (T 15.4 min for 1β , 14 min for 1α).

Crystallisation from 2-propanol of the crude mixture of 2α and 2β , obtained by the above procedure⁶, gave 2,3,4,6-tetra-O-acetyl- β -D-mannopyranosylbenzene (2β), m.p. $108-109^{\circ}$, [α]_D²⁰ -23° (c 0.86, chloroform), T 17.8 min (at 155°), R_F 0.31; lit.⁶ m.p. $107-108^{\circ}$, [α]_D -25.8° (chloroform).

2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosylbenzene (2 α), obtained by column chromatography, had m.p. 135–136° (from 2-propanol), $[\alpha]_D^{20} + 53^\circ$ (c 0.98, chloroform), T 14 min (at 155°), R_F 0.35; lit.⁶ m.p. 139.5–140°, $[\alpha]_D + 53.6^\circ$ (chloroform).

ACKNOWLEDGMENT

We thank Dr. J. Bolard for the use of the c.d. equipment.

REFERENCES

- 1 S. Czernecki and G. Ville, J. Org. Chem., 54 (1989) 610-612.
- 2 V. Bellosta and S. Czernecki, J. Chem. Soc., Chem. Commun., (1989) 199-200.
- 3 L. J. Haynes, Adv. Carbohydr. Chem., 20 (1967) 357-369; J. Hasakawa, Prog. Chem. Org. Nat. Prod., 42 (1982) 154-163; S. R. James, J. Carbohydr. Nucleosides Nucleotides, 6 (1979) 417-465.
- 4 J. Chopin, M. L. Bouillant, and E. Besson, in J. B. Harborne and T. J. Mabry (Eds.), *The Flavonoids, Advances in Research*, Chapman & Hall, London, 1982, pp. 449-503.
- 5 C. D. Hurd and W. A. Bonner, J. Am. Chem. Soc., 67 (1945) 1972-1976.

- 6 C. D. Hurd and R. P. Holysz, J. Am. Chem. Soc., 72 (1950) 1732-1735.
- 7 C. S. Hudson, J. Am. Chem. Soc., 31 (1909) 66; Adv. Carbohydr. Chem., 3 (1948) 15-18.
- 8 H. H. Baer and Z. S. Hanna, Can. J. Chem., 59 (1981) 889-906, and references therein.
- 9 R. U. Lemieux and M. Hoffer, Can. J. Chem., 39 (1961) 110-115.
- 10 V. Bellosta, S. Czernecki, D. Avenel, S. El Bahij, and H. Gillier-Pandraud, Can. J. Chem., 68 (1990) 1364-1368, and references therein.
- 11 G. Casiraghi, M. Cornia, L. Colombo, G. Rassu, G. G. Fava, M. F. Belicchi, and L. Zetta, *Tetrahedron Lett.*, 29 (1988) 5549-5552, and references therein; M. Brakta, P. Lhoste, and D. Sinou, *J. Org. Chem.*, 54 (1989) 1890-1896.
- 12 J. G. Buchanan, A. D. Dunn, and A. R. Edgar, J. Chem. Soc., Perkin Trans. 1, (1976) 68-75.
- 13 R. U. Lemieux, Pure Appl. Chem., 25 (1971) 527-548.
- 14 M. Chmielewski, J. N. BEMiller, and D. P. Ceretti, J. Org. Chem., 46 (1981) 3903-3908.
- 15 H. Booth, Tetrahedron Lett., 7 (1965) 411-416.
- 16 C. A. G. Haasnoot, F. A. A. M. de Leeuw, and C. Altona, Bull. Soc. Chim. Belg., 89 (1980) 125-131; A. de Bruyn and M. Anteunis, Carbohydr. Res., 47 (1976) 158-163; A. de Bruyn, M. Anteunis, and J. van Beeumen, Bull. Soc. Chim. Belg., 86 (1977) 259-265.
- 17 R. J. Abraham and P. Loftus, Proton and Carbon-13 NMR Spectroscopy, An Integrated Approach, Heyden, London, 1980, p. 179.
- 18 R. U. Lemieux and J. D. Stevens, Can. J. Chem., 44 (1966) 249–262; T. Huynh-Dinh, C. Gouyette, and J. Igolen, Tetrahedron Lett., 21 (1980) 4499–4509, and ref. 8 therein.
- 19 V. Bellosta, S. Czernecki, and M. C. Perlat, J. Carbohydr. Chem., 7 (1988) 141-149.
- 20 V. I. Minkin, M. Legrand, and M. J. Rougier, in H. Kagan (Ed.), Determination of Configurations by Dipole Moments, CD and ORD in Stereochemistry, Fundamental and Methods, Thieme, Stuttgart, 1977, pp. 67-78.
- 21 K. Kohata, T. Konno, and H. Meguro, Tetrahedron Lett., 21 (1980) 3771-3774.
- 22 G. Snatzke, personal communication.
- 23 T. Sticzay, C. Peciar, and S. Bauer, *Tetrahedron Lett.*, 20 (1968) 2407-2410; T. Sticzay, C. Peciar, and S. Bauer, *ibid.*, 25 (1969) 3521-3525.
- 24 V. Bellosta, Thesis, Université P. et M. Curie, 1987.
- 25 K. Bock and C. Pedersen, J. Chem. Soc., Perkin Trans. 2, (1974) 293-297.
- 26 P. K. Agrawal, D. C. Jain, R. K. Gupta, and R. S. Thakur, Phytochemistry, 24 (1985) 2479-2496, and references therein.
- 27 A. Bax and G. A. Morris, J. Magn. Reson., 42 (1981) 501-505.
- 28 J. B. Stothers, Carbon 13 NMR Spectroscopy, Academic Press, New York, 1972, p. 57-67.
- 29 M. A. Sparks and J. S. Panek, Tetrahedron Lett., 30 (1989) 407-410.
- 30 O. A. Ganson and W. Schittenhelm, J. Am. Chem. Soc., 93 (1971) 4294-4295.